8056 measured reflections

 $R_{\rm int} = 0.062$

2907 independent reflections

1411 reflections with $I > 2\sigma(I)$

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

2-Amino-4-[4-(dimethylamino)phenyl]-5oxo-5,6,7,8-tetrahydro-4H-chromene-3carbonitrile

Yan Qiao,^a Guifang Chen,^a Linggian Kong,^{a,b}* Xiuping Ju^a and Zhiqing Gao^a

^aDongchang College, Liaocheng University, Liaocheng 250059, People's Republic of China, and ^bCollege of Chemistry and Chemical Engineering, Liaocheng University, Shandong 250059, People's Republic of China Correspondence e-mail: konglingqian08@163.com

Received 13 October 2011; accepted 21 October 2011

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.005 Å; R factor = 0.060; wR factor = 0.187; data-to-parameter ratio = 13.8.

In the title molecule, $C_{18}H_{19}N_3O_2$, the fused cyclohexenone and pyran rings adopt sofa conformations. Intermolecular N- $H \cdots N$ and $N - H \cdots O$ hydrogen bonds link molecules into corrugated layers parallel to the bc plane.

Related literature

For the crystal structures of related compounds, see: Kong et al. (2011); Wang (2011).

Experimental

Crystal data

C H NO	V_{1} 2202 5 (5) $\overset{1}{h}^{3}$
$C_{18}H_{19}N_3O_2$	V = 3503.5 (5) A
$M_r = 309.36$	Z = 8
Monoclinic, $C2/c$	Mo $K\alpha$ radiation
a = 25.021 (3) Å	$\mu = 0.08 \text{ mm}^{-1}$
b = 8.8724 (8) Å	$T = 298 { m K}$
c = 16.3827 (16) Å	$0.40 \times 0.36 \times 0.22 \text{ mm}$
$\beta = 114.721 \ (2)^{\circ}$	

Data collection

Bruker SMART APEX CCD areadetector diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{\min} = 0.968, T_{\max} = 0.982$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.060$	210 parameters
$wR(F^2) = 0.187$	H-atom parameters constrained
S = 1.01	$\Delta \rho_{\rm max} = 0.24 \text{ e } \text{\AA}^{-3}$
2907 reflections	$\Delta \rho_{\rm min} = -0.21 \text{ e } \text{\AA}^{-3}$

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$\overline{N1-H1A\cdots N2^{i}}$	0.86	2.16	3.014 (4)	171
$N1-H1B\cdots O2^{ii}$	0.86	2.02	2.867 (4)	169

Symmetry codes: (i) -x, -y + 1, -z; (ii) $x, -y, z - \frac{1}{2}$.

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

This project was supported by the Foundation of Dongchang College, Liaocheng University (grant No. LG0801).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CV5176).

References

Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Kong, L., Ju, X., Qiao, Y., Zhang, J. & Gao, Z. (2011). Acta Cryst. E67. In the press.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Wang, X. (2011). Acta Cryst. E67, 0832.

supplementary materials

Acta Cryst. (2011). E67, o3067 [doi:10.1107/S1600536811043662]

2-Amino-4-[4-(dimethylamino)phenyl]-5-oxo-5,6,7,8-tetrahydro-4H-chromene-3-carbonitrile

Y. Qiao, G. Chen, L. Kong, X. Ju and Z. Gao

Comment

In continuation of our structural studies of benzopyran derivatives (Kong et al., 2011), we present here the title compound (I).

In (I) (Fig. 1), all bond lengths and angles are normal and comparable with those in close compounds (Kong *et al.*, 2011; Wang, 2011). The dihedral angle between the C2/C1/O1/C9/C4 plane and the (C2-C4) plane is $9.86(4)^{\circ}$. The C2/C1/O1/C9/C4 plane forms an angle of $86.43 (12)^{\circ}$ with the phenyl plane C11-C16.

In the crystal structure, intermolecular N—H···N and N—H···O hydrogen bonds (Table 1) link molecules into corrugated layers parallel to *bc* plane.

Experimental

Malononitrile (6 mmol), 1,3-cyclohexanedione (6 mmol) and N,N-dimethylbenzaldehyde (6 mmol) were dissolved in 20 ml ethanol ml in a round-bottom flask. The mixture was warmed, with agitation, to 363 K over a period of 5 h. The resulting solution was cooled. Crystals of (I) suitable for X-ray diffraction analysis were obtained by slow evaporation.

Refinement

All H atoms were placed in geometrically idealized positions (N-H 0.86 and C-H 0.93-0.97 Å) and treated as riding on their parent atoms, with $U_{iso}(H) = 1.2-1.5 U_{eq}$ (C, N).

Figures

Fig. 1. The title molecule with the atomic numbering scheme. The displacement ellipsoids are shown at the 30% probability level.

2-Amino-4-[4-(dimethylamino)phenyl]-5-oxo-5,6,7,8-tetrahydro- 4H-chromene-3-carbonitrile

Crystal data	
C ₁₈ H ₁₉ N ₃ O ₂	F(000) = 1312
$M_r = 309.36$	$D_{\rm x} = 1.244 {\rm ~Mg} {\rm ~m}^{-3}$
Monoclinic, C2/c	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
a = 25.021 (3) Å	Cell parameters from 1265 reflections
b = 8.8724 (8) Å	$\theta = 2.5 - 21.3^{\circ}$
c = 16.3827 (16) Å	$\mu = 0.08 \text{ mm}^{-1}$
$\beta = 114.721 \ (2)^{\circ}$	T = 298 K
$V = 3303.5 (5) \text{ Å}^3$	Block, red
Z = 8	$0.40 \times 0.36 \times 0.22 \text{ mm}$

Data collection

Bruker SMART APEX CCD area-detector diffractometer	2907 independent reflections
Radiation source: fine-focus sealed tube	1411 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.062$
phi and ω scans	$\theta_{\text{max}} = 25.0^{\circ}, \ \theta_{\text{min}} = 2.5^{\circ}$
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)	$h = -29 \rightarrow 25$
$T_{\min} = 0.968, \ T_{\max} = 0.982$	$k = -10 \rightarrow 8$
8056 measured reflections	$l = -19 \rightarrow 19$

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.060$	Hydrogen site location: inferred from neighbouring sites
$wR(F^2) = 0.187$	H-atom parameters constrained
<i>S</i> = 1.01	$w = 1/[\sigma^2(F_o^2) + (0.0818P)^2 + 1.1159P]$ where $P = (F_o^2 + 2F_c^2)/3$
2907 reflections	$(\Delta/\sigma)_{\rm max} < 0.001$
210 parameters	$\Delta \rho_{max} = 0.24 \text{ e} \text{ Å}^{-3}$
0 restraints	$\Delta \rho_{min} = -0.21 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2 \text{sigma}(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
N1	0.05600 (14)	0.2235 (3)	-0.03033 (19)	0.0617 (9)
H1A	0.0417	0.3129	-0.0433	0.074*
H1B	0.0652	0.1742	-0.0679	0.074*
N2	0.00475 (15)	0.4788 (4)	0.0962 (2)	0.0641 (10)
N3	0.23314 (16)	0.5169 (4)	0.4808 (3)	0.0788 (11)
01	0.08809 (11)	0.0187 (2)	0.05519 (15)	0.0530 (7)
O2	0.07367 (12)	-0.0804 (3)	0.32595 (18)	0.0683 (8)
C1	0.06404 (14)	0.1610 (4)	0.0482 (2)	0.0422 (9)
C2	0.05254 (14)	0.2195 (3)	0.1146 (2)	0.0389 (8)
C3	0.06843 (14)	0.1431 (3)	0.2039 (2)	0.0383 (8)
Н3	0.0327	0.1385	0.2145	0.046*
C4	0.08682 (14)	-0.0157 (3)	0.1978 (2)	0.0390 (8)
C5	0.08851 (16)	-0.1218 (4)	0.2673 (3)	0.0543 (10)
C6	0.1057 (2)	-0.2815 (4)	0.2617 (3)	0.0838 (15)
H6A	0.0704	-0.3419	0.2335	0.101*
H6B	0.1276	-0.3199	0.3220	0.101*
C7	0.1428 (2)	-0.2992 (4)	0.2089 (3)	0.0866 (15)
H7A	0.1814	-0.2557	0.2427	0.104*
H7B	0.1479	-0.4055	0.2003	0.104*
C8	0.11417 (18)	-0.2228 (4)	0.1188 (3)	0.0613 (11)
H8A	0.1417	-0.2193	0.0911	0.074*
H8B	0.0801	-0.2805	0.0799	0.074*
C9	0.09573 (14)	-0.0674 (4)	0.1286 (2)	0.0449 (9)
C10	0.02665 (16)	0.3637 (4)	0.1031 (2)	0.0428 (9)
C11	0.11413 (14)	0.2331 (3)	0.2807 (2)	0.0386 (8)
C12	0.16973 (16)	0.2606 (4)	0.2860 (3)	0.0555 (10)
H12	0.1808	0.2171	0.2438	0.067*
C13	0.20934 (17)	0.3510 (4)	0.3524 (3)	0.0633 (11)
H13	0.2464	0.3673	0.3537	0.076*
C14	0.19513 (17)	0.4180 (4)	0.4172 (3)	0.0522 (10)
C15	0.13956 (18)	0.3880 (4)	0.4126 (2)	0.0572 (10)
H15	0.1283	0.4297	0.4551	0.069*
C16	0.10079 (15)	0.2973 (4)	0.3461 (2)	0.0490 (9)
H16	0.0640	0.2788	0.3454	0.059*
C17	0.2940 (2)	0.5246 (5)	0.4932 (4)	0.1074 (19)
H17A	0.3129	0.4299	0.5158	0.161*
H17B	0.3139	0.6030	0.5354	0.161*
H17C	0.2953	0.5460	0.4367	0.161*
C18	0.2225 (2)	0.5576 (6)	0.5575 (3)	0.1047 (18)
H18A	0.1839	0.6007	0.5377	0.157*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

supplementary materials

H18B	0.2513	0.6299	0.5932	0.157*
H18C	0.2251	0.4694	0.5929	0.157*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
N1	0.104 (3)	0.0475 (19)	0.046 (2)	0.0274 (17)	0.0439 (19)	0.0138 (15)
N2	0.092 (3)	0.048 (2)	0.059 (2)	0.0198 (19)	0.038 (2)	0.0132 (16)
N3	0.069 (3)	0.064 (2)	0.079 (3)	-0.0101 (19)	0.006 (2)	-0.019 (2)
01	0.0782 (18)	0.0426 (15)	0.0480 (16)	0.0211 (13)	0.0360 (14)	0.0096 (12)
O2	0.097 (2)	0.0645 (18)	0.0472 (17)	-0.0115 (15)	0.0338 (16)	0.0095 (14)
C1	0.050 (2)	0.038 (2)	0.040 (2)	0.0075 (16)	0.0202 (17)	0.0037 (16)
C2	0.045 (2)	0.037 (2)	0.0331 (19)	0.0050 (15)	0.0149 (16)	0.0038 (15)
C3	0.042 (2)	0.0386 (19)	0.037 (2)	0.0015 (15)	0.0187 (16)	0.0036 (15)
C4	0.047 (2)	0.0325 (19)	0.0336 (19)	-0.0056 (15)	0.0128 (16)	0.0051 (15)
C5	0.066 (3)	0.046 (2)	0.040 (2)	-0.0094 (19)	0.011 (2)	0.0049 (18)
C6	0.139 (4)	0.039 (2)	0.061 (3)	0.002 (2)	0.030 (3)	0.015 (2)
C7	0.120 (4)	0.046 (3)	0.081 (3)	0.025 (3)	0.029 (3)	0.016 (2)
C8	0.074 (3)	0.040 (2)	0.067 (3)	0.0051 (19)	0.027 (2)	0.0000 (19)
C9	0.052 (2)	0.035 (2)	0.045 (2)	0.0021 (16)	0.0178 (18)	0.0088 (17)
C10	0.060 (2)	0.039 (2)	0.033 (2)	0.0017 (18)	0.0232 (17)	0.0030 (16)
C11	0.044 (2)	0.0339 (19)	0.036 (2)	0.0044 (15)	0.0153 (16)	0.0061 (15)
C12	0.049 (2)	0.064 (3)	0.058 (3)	-0.001 (2)	0.026 (2)	-0.007 (2)
C13	0.042 (2)	0.070 (3)	0.074 (3)	-0.004 (2)	0.021 (2)	-0.008 (2)
C14	0.056 (3)	0.033 (2)	0.052 (2)	0.0002 (18)	0.008 (2)	0.0012 (18)
C15	0.073 (3)	0.051 (2)	0.051 (2)	-0.005 (2)	0.029 (2)	-0.0125 (19)
C16	0.049 (2)	0.052 (2)	0.048 (2)	-0.0072 (18)	0.0225 (19)	-0.0072 (18)
C17	0.062 (3)	0.083 (4)	0.132 (5)	-0.018 (3)	-0.003 (3)	-0.018 (3)
C18	0.124 (4)	0.085 (3)	0.072 (4)	-0.020 (3)	0.009 (3)	-0.037 (3)

Geometric parameters (Å, °)

N1—C1	1.337 (4)	С7—С8	1.505 (5)
N1—H1A	0.8600	С7—Н7А	0.9700
N1—H1B	0.8600	С7—Н7В	0.9700
N2—C10	1.141 (4)	C8—C9	1.484 (5)
N3—C14	1.390 (5)	С8—Н8А	0.9700
N3—C18	1.435 (6)	C8—H8B	0.9700
N3—C17	1.450 (5)	C11—C16	1.372 (4)
O1—C9	1.369 (4)	C11—C12	1.379 (5)
O1—C1	1.383 (4)	C12—C13	1.381 (5)
O2—C5	1.222 (4)	C12—H12	0.9300
C1—C2	1.341 (4)	C13—C14	1.387 (5)
C2—C10	1.411 (5)	С13—Н13	0.9300
C2—C3	1.507 (4)	C14—C15	1.386 (5)
C3—C4	1.498 (4)	C15—C16	1.376 (5)
C3—C11	1.524 (4)	C15—H15	0.9300
С3—Н3	0.9800	С16—Н16	0.9300
C4—C9	1.326 (4)	C17—H17A	0.9600

C4—C5	1.464 (5)		С17—Н17В		0.9600
C5—C6	1.495 (5)		С17—Н17С		0.9600
С6—С7	1.517 (6)		C18—H18A		0.9600
С6—Н6А	0.9700		C18—H18B		0.9600
С6—Н6В	0.9700		C18—H18C		0.9600
C1—N1—H1A	120.0		С7—С8—Н8А		109.5
C1—N1—H1B	120.0		C9—C8—H8B		109.5
H1A - N1 - H1B	120.0		C7—C8—H8B		109.5
C14 - N3 - C18	1197(4)		H8A—C8—H8B		108.1
C14 - N3 - C17	1189(4)		C4-C9-01		123.1 (3)
C18 - N3 - C17	115.7 (4)		C4-C9-C8		125.8 (3)
$C_{2} = 0_{1} = 0_{1}$	118.6(2)		01 - C9 - C8		123.0(3)
N1-C1-C2	128.6(3)		$N^2 - C^{10} - C^2$		177 2 (4)
N1-C1-O1	120.0(3) 110.1(3)		C_{16} C_{11} C_{12}		1177.2(1)
C_{2} C_{1} C_{1	121.3(3)		C16 - C11 - C3		121.2(3)
$C_2 = C_1 = C_1$	121.3(3) 1100(3)		C10-C11-C3		121.2(3) 122.3(3)
C1 - C2 - C10	117.0(3) 123.7(3)		C12 - C11 - C13		122.3(3)
$C_1 = C_2 = C_3$	123.7(3) 117.3(3)		C11_C12_H12		121.7 (5)
$C_{10} = C_2 = C_3$	117.3(3) 108.8(3)		C11—C12—I112		119.2
$C_{4} = C_{5} = C_{2}$	100.0(3) 112.7(2)		C13 - C12 - C12		119.2
$C_{4} = C_{3} = C_{11}$	115.7(5) 111.5(2)		C12 - C13 - C14		121.3 (4)
$C_2 = C_3 = C_{11}$	111.5 (5)		С12—С13—Н13		119.2
$C_{4} = C_{5} = H_{5}$	107.5		C14 - C13 - H13		119.2
C11 C2 U2	107.5		C15-C14-C13		110.0 (3)
Ch C4 C5	107.3		C13 - C14 - N3		121.2 (4)
$C_{9} = C_{4} = C_{3}$	118.8(3)		C13 - C14 - N3		122.1 (4)
$C_{9} = C_{4} = C_{3}$	123.3(3)		C16-C15-C14		121.0 (3)
$C_{3} = C_{4} = C_{3}$	11/.0(3)		C16—C15—H15		119.5
02 - 03 - 04	119.9 (3)		C14—C15—H15		119.5
02 - C5 - C6	121.6 (3)		CII—CI6—CI5		122.7 (3)
C4 - C5 - C6	118.5 (4)		CII—CI0—HI0		118.0
$C_{5} = C_{6} = C_{7}$	113.2 (3)		CI5-CI6-HI6		118.6
C_{3} C_{6} H_{6}	108.9		N3-C17-H17A		109.5
	108.9		N3-CI/-HI/B		109.5
С5—С6—Н6В	108.9		HI/A—CI/—HI/B		109.5
С/—С6—Н6В	108.9		N3—CI7—HI7C		109.5
H6A—C6—H6B	107.8		HI/A—CI/—HI/C		109.5
$C_8 = C_7 = C_6$	111.0 (4)		HI/B - CI/ - HI/C		109.5
С8—С/—Н/А	109.4		N3—C18—H18A		109.5
С6—С7—Н7А	109.4		N3—C18—H18B		109.5
С8—С7—Н7В	109.4		H18A—C18—H18B		109.5
С6—С7—Н7В	109.4		N3—C18—H18C		109.5
H7A—C7—H7B	108.0		H18A—C18—H18C		109.5
C9—C8—C7	110.8 (3)		H18B—C18—H18C		109.5
С9—С8—Н8А	109.5				
Hydrogen-bond geometry (Å, °)					
D—H···A		<i>D</i> —Н	H···A	$D \cdots A$	D—H··· A
N1—H1A···N2 ⁱ		0.86	2.16	3.014 (4)	171.

supplementary materials

N1—H1B···O2 ⁱⁱ	0.86	2.02	2.867 (4)	169.
Symmetry codes: (i) $-x$, $-y+1$, $-z$; (ii) x , $-y$, $z-1/2$.				

Fig. 1

